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Acute myeloid leukemia (AML), one of the most common hematological malignancies worldwide, is derived
from a fraction of stem cells known as leukemic stem cells (LSCs), which possess self-renewal and high propaga-
tion capacities. Remaining quiescent and being resistant to conventional chemotherapy, residual LSCs after che-
motherapy drive leukemia regrowth, leading to AML relapse. Therefore, the eradication of LSCs is critical for
the treatment of AML. We previously identified hepatitis A virus cellular receptor 2 (HAVCR2/TIM-3) as an LSC-
specific surface molecule by comparing gene expression in LSCs and hematopoietic stem cells (HSCs). TIM-3 ex-
pression clearly discriminated LSCs from HSCs within the CD34+CD38− stem cell fraction. Furthermore, AML cells
secrete galectin-9, a TIM-3 ligand, in an autocrine manner, leading to constitutive TIM-3 signaling that main-
tains the self-renewal capacity of LSCs via the induction of β-catenin accumulation. Thus, TIM-3 is an indispensa-
ble functional molecule for human LSCs. Herein, we review the functional aspects of TIM-3 in AML and evaluate
minimal/measurable residual disease with a focus on CD34+CD38−TIM-3+ LSCs. Using sequential genomic analysis
of identical patients, we determined that CD34+CD38−TIM-3+ cells in the complete remission (CR) phase after al-
logeneic stem cell transplantation (allo-SCT) are the LSCs responsible for AML relapse. We retrospectively evalu-
ated the incidence of TIM-3+ residual LSCs. All analyzed patients achieved CR and complete donor chimerism at
the engraftment phase; however, the high frequency of residual TIM-3+ LSCs within the CD34+CD38− fraction at
engraftment was a significant and independent risk factor for relapse. Residual TIM-3+ LSC levels in the engraft-
ment phase had a stronger impact on relapse than did pre-SCT disease status. Therefore, the evaluation of re-
sidual TIM-3+ LSCs is a promising approach for predicting leukemia relapse after allo-SCT.
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Acute myeloid leukemia (AML) originates from a
small fraction of self-renewing leukemic stem cells
(LSCs), which can repopulate human AML in immu-
nodeficient mice after xenogeneic transplantation1,2.
Leukemic stem cells possess self-renewal capacity and
differentiation potential toward leukemic blasts, thereby
maintaining the AML population. Acute myeloid leuke-
mia LSCs were originally identified in the CD34+CD38−

fraction, and their phenotype is identical to that of nor-
mal hematopoietic stem cells (HSCs). Recent research
advances in immunodeficient mice have enabled the
isolation of LSCs from the CD34+CD38− fraction3; how-
ever, quiescent LSCs with high self-renewal potential
are concentrated within this fraction4. Given that LSCs
originate from multipotent self-renewing pre-leukemic
HSCs, in which somatic mutations or genetic events ac-
cumulate throughout their life cycle5-7, LSCs and HSCs
share multiple molecular mechanisms for the mainte-



nance of their stemness. Such similarities between
LSCs and HSCs have hampered the development of
LSC-specific therapeutic strategies while sparing the
HSCs. We intensively investigated the gene expression
of FACS-purified CD34+CD38− HSCs and LSCs and
identified T-cell immunoglobulin mucin-3 (TIM-3) as
an LSC-specific surface molecule whose expression was
not observed in HSCs. TIM-3 expression clearly dis-
criminates LSCs from HSCs within the CD34+CD38−

stem cell fraction8.
In this review, we discuss the function of TIM-3 in

AML LSCs. Furthermore, we discuss the significance
of the evaluation of minimal/measurable residual dis-
ease (MRD), focusing on CD34+CD38−TIM-3+ LSCs in
allogeneic stem cell transplantation (allo-SCT).

TIM-3 belongs to the TIM family, and HAVCR1,
HAVCR2, and TIMD4 encode TIM-1, TIM-3, and TIM-
4, respectively. TIM-3 consists of an N-terminal immu-
noglobulin (Ig) variable domain, mucin domain, trans-
membrane domain, and cytoplasmic tail. The cytoplas-
mic tail of TIM-3 contains conserved tyrosine residues
and an Src homology 2 (SH2)-binding motif.
TIM-3 was originally identified as a 60 kDa surface

molecule expressed on interferon-γ-producing CD4+ and
CD8+ T cells in mice. Previous studies have demon-
strated that TIM-3 is expressed in other types of blood
cells such as monocytes, dendritic cells (DCs),
mast cells, regulatory T (Treg) cells, and natural killer
cells9, 10.
Four independent ligands of TIM-3 have been identi-

fied: galectin-9 (gal-9), phosphatidylserine (PtdSer),
high-mobility group box 1 (HMGB1), and carcinoem-
bryonic antigen-related cell adhesion molecule 1 (CEA-
CAM1)9. Gal-9, an S-type lectin, is expressed and se-
creted by hematopoietic cells. Gal-9 ligation to TIM-3
induces apoptosis of Th1 cells and inhibits interferon-γ
production11. PtdSer has been identified as a common
ligand for all TIM family members based on the crystal
structure analysis of TIM-1, TIM-3, and TIM-412, 13.
TIM-3 plays crucial roles in the phagocytosis of apop-
totic cells and cross-presentation by DCs via its interac-
tion with PtdSer14. CEACAM1 is considered to bind to
the cleft framed by the FG and CC loops of the IgV
domain of TIM-3, similar to PtdSer15. HMGB1 was
identified as a TIM-3 ligand in DCs; TIM-3+ tumor-
infiltrating DCs attenuated the nucleic acid-mediated in-
nate immune response by interacting with TIM-3 and
HMGB116.
The interaction between ligands and TIM-3 results in

the recruitment of Src family kinases to the SH2 bind-
ing motif of the cytoplasmic tail, leading to downstream

signal transduction. In general, ligation of TIM-3
ligands suppresses the activation of TIM-3+ T cells;
therefore, TIM-3 has been extensively investigated as a
co-inhibitor or immune checkpoint molecule of T
cells like programmed cell death 1 and cytotoxic T-
lymphocyte-associated protein 4.
Consistent with the suppressive function of TIM-3 in

T cells, the most dysfunctional T-cell subset of tumor-
infiltrating CD8+PD-1+ T cells expresses TIM-317-19. The
double blockade of programmed cell death 1 and TIM-
3 by monoclonal antibodies showed a synergistic effect
against tumors in murine models17 and improved the tu-
mor antigen-specific human CD8+ T-cell response in vi-
tro18, 19. Furthermore, recent studies have emphasized the
significance of TIM-3 in tumor immunity by modifying
Treg function, with the majority of tumor-infiltrating hu-
man Treg cells expressing TIM-320, 21. Accordingly, anti-
body blockade of TIM-3 suppresses Treg function22 and
attenuates tumor growth23 in mice. Based on the results
of these studies, anti-human TIM-3 monoclonal anti-
bodies have been developed as immune checkpoint
inhibitors, and first-in-human phase I/II studies are be-
ing conducted to test their safety and efficacy in cancer
treatment24.

TIM-3 has been extensively investigated as a negative
regulator of T-cell function. However, unlike other co-
inhibitory molecules, TIM-3 lacks known inhibitory sig-
naling motifs in the cytoplasmic domain. Therefore, we
attempted to identify the LSC-specific functions of
TIM-3 in AML cells. We first evaluated the serum con-
centration of gal-9, the most extensively investigated
ligand of TIM-3, in humans and unexpectedly found
that patients with AML exhibited a significant increase
in serum gal-9 levels compared to healthy donors and
patients with other hematological malignancies, such as
acute lymphoblastic leukemia and lymphoma. Based on
these observations, we hypothesized that TIM-3+ AML
cells secrete gal-9 in an autocrine manner in humans.
Consistently, xenotransplantation of primary TIM-3+

LSCs reconstituted human AML in recipient mice with
high serum concentrations of human gal-9. Blockade of
the TIM-3/gal-9 interaction using an anti-human gal-9
monoclonal antibody strongly suppressed the leukemia
reconstitution potential of AML LSCs in xenotransplan-
tation experiments, suggesting a critical role of the
TIM-3/gal-9 autocrine loop in the maintenance of LSC
properties25. Furthermore, we found that TIM-3/gal-9 in-
teraction promoted the co-activation of the nuclear fac-
tor (NF)-κB and β-catenin pathways in human AML
cells. Nuclear accumulation of β-catenin and subse-



quent activation of its target genes are involved in the
maintenance of LSCs in murine AML models26 and hu-
man chronic myelogenous leukemia27. Furthermore, co-
activation of NF-κB and β-catenin coordinately pro-
motes the development of cancer stem cells in a murine
colorectal cancer model28. Therefore, we hypothesized
that this TIM-3/gal-9 autocrine loop may be involved in
the development of human myeloid LSCs. In humans,
the frequencies of TIM-3+ aberrant HSCs within the CD
34+CD38- fraction increased along with disease progres-
sion toward AML in myeloid malignancies, including
myelodysplastic syndrome and myeloproliferative neo-
plasm25. Importantly, purified-CD34+CD38−TIM-3+ cells
exclusively reconstituted AML, whereas CD34+CD38−

TIM-3− cells from identical patients reconstituted multi-
lineage human normal hematopoiesis in xenotransplan-
tation experiments29, suggesting that TIM-3 clearly dis-
criminates functional LSCs from HSCs. Consistent with
the distinct reconstitution potential of CD34+CD38−

TIM-3+ LSCs and CD34+CD38−TIM-3− HSCs, genetic
analysis revealed a clonal relationship between CD34+

CD38−TIM-3+ and CD34+CD38−TIM-3− cells; CD34+CD
38−TIM-3+ LSCs represented clones harboring driver
mutations derived from CD34+CD38−TIM-3− cells con-
taining pre-leukemic HSCs6. Collectively, these results
suggest that TIM-3 is a functional molecule required to
maintain the properties of human myeloid LSCs.
We identified various unique molecules and down-

stream signaling cascades involved in TIM-3 signaling
in AML LSCs (Sakoda, Kikushige et al., under revi-
sion). Interestingly, the downstream molecules in TIM-
3+ AML and TIM-3+-exhausted T cells in humans are
quite different. Thus, signaling molecules downstream
of TIM-3 are critical for determining the effects of
TIM-3 signaling. In this review, we discuss AML-
specific TIM-3 signaling cascades.

We previously reported that a cytotoxic anti-human
TIM-3 monoclonal antibody effectively killed LSCs
without affecting normal human hematopoiesis in vivo8.
A recent study demonstrated the efficacy of bis-

pecific chimeric antigen receptor T cells targeting both
CD13 and TIM-3 in the treatment of human AML in
vivo30.
In addition to cytotoxic therapeutic approaches

against TIM-3+ AML cells, Recent clinical studies have
demonstrated the efficacy of blocking TIM-3+ myeloid
malignancies. As anti-human TIM-3 monoclonal anti-
bodies have been developed as immune checkpoint in-
hibitors, first-in-human phase I/II studies have been in-
itiated to test the safety and efficacy of these antibodies

in cancer treatment24. The efficacy of anti-human TIM-3
monoclonal antibodies has been evaluated in combina-
tion with other immune checkpoint inhibitors such as
anti-PD-1/PD-L1 monoclonal antibodies31. Sabatolimab
(MBG453), an anti-human TIM-3 humanized IgG4
monoclonal antibody with the S228P mutation, has
been tested for the treatment of myeloid malignancies,
including AML, high-risk myelodysplastic syndromes,
and chronic myelomonocytic leukemia. Combination
therapy with sabatolimab and hypomethylating agents
(HMAs) has shown preliminary efficacy and safety in
recent clinical trials32.

Acute myeloid leukemia relapse remains a major
clinical challenge. Particularly, the prognosis of patients
who experience relapse after allo-SCT is poor. Leuke-
mic stem cells remain quiescent and are resistant to
conventional chemotherapy. Residual LSCs after che-
motherapy eventually drive leukemia regrowth, leading
to AML relapse. Therefore, the evaluation of MRD, fo-
cusing on LSCs, can be a powerful strategy to improve
the clinical outcome of AML. Consistently, the Euro-
pean Leukemia Network MRD Working Party recom-
mends the evaluation of LSC markers in multiparameter
flow cytometry-based MRD in addition to the conven-
tional leukemia-associated immunophenotype and
different-from-normal-based staining strategies33. TIM-3
clearly discriminated LSCs from HSCs within the CD
34+CD38− stem cell fraction. In addition, TIM-3 expres-
sion in AML cells is stably preserved at the time of re-
lapse34, 35. Based on these data, we consider TIM-3 an
ideal surface marker for LSCs in MRD evaluation.
We conducted a retrospective cohort study to investi-

gate whether the evaluation of residual LSCs using
TIM-3 expression could predict AML relapse after allo-
SCT. The frequency of residual TIM-3+ LSCs within
the CD34+CD38− fraction at the time of engraftment
was strongly correlated with relapse after allo-SCT, al-
though all patients achieved hematological complete re-
mission (hCR) and complete donor chimerism. The lev-
els of residual TIM-3+ LSCs in the engraftment phase
had a stronger impact on relapse than did pre-SCT dis-
ease status, indicating the significance of response-
oriented MRD evaluation strategies. Furthermore,
CD34+CD38−TIM-3+ cells in the hCR phase represent
the LSCs responsible for relapse, as assessed by se-
quential genomic and transcriptome analyses of identi-
cal patients. Thus, evaluation of residual TIM-3+ LSCs
is a promising approach for predicting the clinical out-
come of patients with AML after allo-SCT (Sakoda,
Kikushige et al., manuscript in preparation).



TIM-3 expression clearly discriminated donor-derived
normal HSCs and recipient-derived LSCs within the
CD34+CD38− cellular fraction. Therefore, evaluation of
CD34+CD38−TIM-3+ residual LSCs after allo-SCT
would be a useful method for the risk stratification of
AML relapse, as discussed in this review. Furthermore,
the blockade of TIM-3 signaling represents a unique
therapeutic strategy to eradicate LSCs via two inde-
pendent mechanisms: blockade of the TIM-3/gal-9
autocrine loop in TIM-3+ AML and restoration of T cell
immunity against AML. Thus, the combination of TIM-
3-targeted therapeutic approaches and TIM-3-based
MRD assessment may be used to improve the clinical
outcomes of patients with AML after allo-SCT. Further
studies are necessary to determine the clinical role of
TIM-3 in myeloid malignancies.
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