Adherence to long-term follow-up preventive practices in allogeneic hematopoietic cell transplantation survivors from North India

Niranjan S. Khaire1, Prashant Chhabra1, Dikshat G. Gupta1, Aditya Jandial1, Alka Khadwal1, Kripa Shanker Kasudhan1, Shaweta Kaundal1, Madhu Chopra1, Arihant Jain1, Gaurav Prakash1, Navneet S. Majhail2, Pankaj Malhotra1, Deepesh P. Lad1

1Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India, 2Sarah Cannon Transplant and Cellular Therapy Program at TriStar Centennial, Nashville, USA

Abstract

Introduction: There are existing international guidelines for long-term follow-up (LTFU) care of allogeneic hematopoietic cell transplantation (allo-HCT) survivors. However, implementing these guidelines represents a unique challenge in resource-challenged settings.

Methods: This study aimed to evaluate adherence to recommended surveillance in allo-HCT survivors at an academic center in North India and study the incidence of late effects. This single-center, retrospective study analyzed records of allo-HCT recipients from 2016 to 2020. Survivors were screened in our LTFU clinic at day +100 and +365 using cardiometabolic parameters (screening for hypertension, dyslipidemia, hyperglycemia, 24-hour urine protein, thyroid function), pulmonary function test (PFT), bone mineral density (BMD), and initiation of revaccination.

Results: A total of 40/80 (50%) allo-HCT survivors were alive at a median of 888 days (IQR 515-1,306). The adherence to home-based screening parameters such as blood pressure and blood glucose was highest (>75%), followed by lab-based parameters (45-70%), and lowest for specialized tests such as PFT (<50%) at both day +100 and +365 time points. Adherence to the initiation of revaccination was only 67%. At least one cardiometabolic parameter was out of range in 55% and 63% of survivors at day +100 and +365, respectively.

Conclusion: The adherence to recommended surveillance measures for allo-HCT survivors in an academic LTFU clinic at one year was only 75% overall. Cardiometabolic abnormalities were noted in more than half of the survivors. This study emphasizes the need for a structured LTFU clinic in all centers performing HCT.

Key words LTFU care, allo-HCT, adherence, cardio-metabolic

Submitted December 31, 2021; Accepted February 28, 2022; Published online June 10, 2022; Issued online August 25, 2022

Correspondence: Deepesh P. Lad, Associate Professor, Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India, E-mail: lad.deepesh@pgimer.edu.in

Introduction

It is well known that the life expectancy of allo-HCT survivors is lower than the general population due to several late side effects1. There are international consensus guidelines for recommended screening and preventive practices for LTFU care of HCT survivors2. However, adherence to these guidelines in resource-challenged settings and poor health literacy represent unique challenges. More than 100 transplant centers perform approximately 1,500 allogeneic allo-HCTs in India annually3. These numbers have doubled over the last five years. While only a few of these centers (<5%) are publicly funded academic medical institutions, most exist in the private sector in major metropolitan cities. Most centers have existing infrastructure according to the requirements recommended by the Worldwide Network for Blood and Marrow Transplantation for running an acute care HCT program4. However, data on India’s long-term follow-up (LTFU) care for HCT survivors is lacking. A recent survey from the Indian Society for Blood and Marrow Transplantation (ISBMT) show-
ed that only 47% of transplant physicians reported adherence to revaccination protocols after HCT. Our center is an academic institute of national importance under the Ministry of Health in North India, with a recently established LTFU clinic. We conducted a retrospective analysis to study adherence to recommended screening measures and the incidence of late effects of allo-HCT in a real-world setting.

Methods

Our center is a 10-bed HCT center performing 50-60 autologous+allo-HCT since 2008. The LTFU clinic was started in 2016 and is run weekly by a team of faculty members, senior residents, and medical social workers in liaison with other specialists when needed. Allo-HCT survivors are evaluated in our LTFU clinic at day +100 and +365 and annually thereafter for late effects according to international guidelines. The institutional ethics committee cleared the study. The medical records up to one-year post-HCT of all consecutive patients who underwent allo-HCT from April 2016 to December 2020 were analyzed. The parameters analyzed were cardiometabolic surveillance (screening for hypertension, dyslipidemia, hyperglycemia, 24-hour urine protein examination, thyroid function), pulmonary function test (PFT), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) scan, and initiation of revaccination. As most patients in our cohort were premenopausal women and men <50-years, Z-score ≤−2.0 were used to define ‘below the expected range for age’ as per the recently updated International Society for Clinical Densitometry (ISCD) adult official position. The patients were asked to monitor blood pressure and blood glucose levels at home and report them during their visit to the clinic, whereas all the other parameters were tested in laboratories either in our center or in private testing centers. Since this study reports adherence up to only one year of follow-up, a second cancer screening was not reported.

Results

Of the 80 patients who underwent allo-HCT at our center during the study period, 60 and 40 survivors were eligible for the day +100 and +365 follow-up, respectively (Table 1). The median follow-up duration of the survivors was 888 days (IQR: 515-1,306 days). No patients were lost to follow-up in our cohort. The cohort’s median age was 24 years (IQR, 18-39 years), and there was a male preponderance (n=57, 71%). The most common indication for transplantation was leukemia (n=50, 63%), followed by aplastic anemia/primary immune deficiency (n=16, 20%), and myelodysplasia/myeloproliferative neoplasms (n=14, 17%). The source of stem cells was matched related donors (n=43, 54%), followed by haploidentical donors (n=29, 36%), and matched unrelated donors (n=8, 20%). Myeloablative

<table>
<thead>
<tr>
<th>Table 1. Baseline patient and transplant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
</tr>
<tr>
<td>N (%) or Median (IQR)</td>
</tr>
<tr>
<td>N = 80</td>
</tr>
<tr>
<td>Age at transplant (years)</td>
</tr>
<tr>
<td>Median follow up (days)</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Leukemia</td>
</tr>
<tr>
<td>Aplastic anemia/ primary immune deficiency</td>
</tr>
<tr>
<td>Myelodysplasia/ myeloproliferative neoplasm</td>
</tr>
<tr>
<td>Donor</td>
</tr>
<tr>
<td>Matched related</td>
</tr>
<tr>
<td>Matched unrelated</td>
</tr>
<tr>
<td>Haploidentical</td>
</tr>
<tr>
<td>Conditioning</td>
</tr>
<tr>
<td>Myeloablative</td>
</tr>
<tr>
<td>Non-myeloablative/ Reduced intensity</td>
</tr>
<tr>
<td>Survivors eligible for day+100 follow-up</td>
</tr>
<tr>
<td>Incidence of acute GVHD in day+100 survivors</td>
</tr>
<tr>
<td>Survivors eligible for day+365 follow-up</td>
</tr>
<tr>
<td>Incidence of chronic GVHD in day+365 survivors</td>
</tr>
</tbody>
</table>

IQR, interquartile range; GVHD, graft-versus-host disease
conditioning was used in 55% of the patients, and non-
myeloablative/reduced-intensity conditioning was used
in 45%. Total body irradiation was used in 44% (n=35)
of patients. The incidences of acute graft-versus-host
disease (GVHD) and chronic GVHD in day +100 and
+365 survivors were 40% and 53%, respectively. All
patients with GVHD in our cohort received systemic
immunosuppression therapy.

Adherence to home-based screening parameters, in-
cluding blood pressure and blood glucose, was >75% at
both day +100 and +365 (Table 2). The adherence to
other lab-based cardiometabolic screening parameters
varied from 45% to 70% at each time point. The adher-
ence to specialized lab-based tests, such as PFT, was
the lowest at under 50% at either time point. The ad-
herence to the DXA scan for bone density was rela-
tively high (76% at day +100 and 64% at day +365).
Adherence to the initiation of revaccination on day
+365 was only 68%. Dyslipidemia is the most common
abnormality. The incidence rates of dyslipidemia on
days +100 and +365 were 67% and 60%, respectively.
This was followed by low bone mineral density, with
30% and 43% of reports out of range at day +100 and
+365, respectively. Overall, 68% of the eligible patients
had at least one out-of-range screening test on day
+100, with 55% having at least one out-of-range cardi-
ometabolic parameter. The incidence of out-of-range
tests increased to 80% on day +365, with 63% of sur-
vivors having at least one out-of-range cardiometabolic
parameter.

Discussion

Data regarding adherence to LTFU care of allo-HCT
survivors are scarce in the literature, specifically from
resource-challenged regions. In a recent American Soci-
ety for Blood and Marrow Transplantation (ASBMT)
online survey of transplant centers in North America,
only 45% had a dedicated LTFU clinic. Lack of exper-
tise, logistics, financial issues, and practitioners’ prefer-
ence to provide survivorship care are obstacles to estab-
lishing new LTFU clinics. The median adherence to
LTFU survivorship care recommendations in resource-
rich settings beyond two years post-HCT was 75%. This
study identified autologous transplant, concerns about
costs, non-white race, male sex, lower physical func-
tioning status, absence of chronic GVHD, longer
time since transplant, and lack of knowledge regarding
the recommended tests as factors associated with poor
adherence. In a recent study from Japan, only 5.8%
failed screening in an automatically ordered electronic
health record system. The reasons cited were equally
distributed between no patient consent, physician deci-
sion, or forgot to order. There are no data on how
many transplant programs in India or resource-
challenged settings have LTFU clinics. Being in an aca-
demic center at an institute of national importance, we
had the resources and motivation to run a structured
LTFU clinic for the past five years. Despite this, the
overall adherence to LTFU survivorship care at one
year was 75%. Adherence in centers without LTFU
clinics in the rest of the country could be even lower.
Although the factors for nonadherence were not ad-
dressed in this short-term follow-up study, poor health
literacy may be one of the reasons. The fact that adher-
ence to home-based screening was the highest, followed
by lab-based and specialized tests, shows that this could
also be due to ease of access. The concurrent imple-
mentation of a prospective study and clinical trial in
our department (CTRI/2019/04/018764) accounts for
the high adherence to BMD monitoring. The current
data show that at least 80% of the study population
could benefit from the monitoring schedule because at
least one actionable out-of-range parameter could be
identified. Although our patient numbers were small
and the follow-up was short to demonstrate any effect
on morbidity and mortality, several extensive studies
have established a relationship between cardiovascular
events in HCT survivors with metabolic syndrome.
The Indian population is also otherwise at a higher risk

Table 2. Adherence and proportion of screening tests out of normal range at day+100 and day+365

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Day+100 N = 60</th>
<th>Day+365 N = 40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adherence</td>
<td>Outside normal range</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>49 (82%)</td>
<td>10 (20%)</td>
</tr>
<tr>
<td>Blood glucose</td>
<td>45 (75%)</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Lipid profile</td>
<td>34 (57%)</td>
<td>23 (68%)</td>
</tr>
<tr>
<td>Urine protein</td>
<td>37 (62%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>Thyroid function</td>
<td>42 (70%)</td>
<td>7 (17%)</td>
</tr>
<tr>
<td>Pulmonary function</td>
<td>29 (48%)</td>
<td>7 (24%)</td>
</tr>
<tr>
<td>DXA scan for bone density</td>
<td>42 (76%)</td>
<td>13 (30%)</td>
</tr>
<tr>
<td>Vaccination</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DXA, dual-energy X-ray absorptiometry
of cardio-metabolic and bone health complications than other ethnicities12,13. The data from this study may not reflect other centers across the region without established LTFU clinics and survivorship care protocols. Overall, the current study reinforces the need to establish a systematic LTFU clinic and protocol in transplant centers, even in resource-challenged settings. A patient-centered approach using a personalized survivorship care plan (SCP) and digital health can improve adherence to recommended surveillance measures in India (CTRI/2021/08/035686).

Author Contributions

NSK, AJ, NSM, PM and DPL contributed to the study conception and design. Data collection and analysis were performed by all authors. The first draft of the manuscript was written by NSK, DPL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Financial Support

The study was partly funded by the American Society of Hematology (ASH) Global Research Award to DPL.

Ethical Approval

The study was cleared by the institutional ethics committee of Postgraduate Institute of Medical Education and Research, Chandigarh, India, INT/IEC/2021/SPL-982.

Informed Consent

Informed consent was obtained from all participants included in the study.

Conflicts of Interest

The authors declare no conflict of interest. Disclosure forms provided by the authors are available on the website.

References

